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Abstract. Eden growth and invasion percolation models have been explored on square 
lattices with a multifractal distribution of growth probabilities. These models generate 
structures with a mass fractal dimensionality of 2 and surfaces which can be described in 
terms of self-similar fractal geometry with a fractal dimensionality larger than 1 and smaller 
than 2. For the Eden growth models the fractal dimensions of the total perimeter, internal 
hull and external hull depend on the probabilities associated with the generator of the 
multifractal measure. For the invasion percolation model the three fractal dimensionalities 
are relatively insensitive to the structure of the generator and may be universal. The 
distribution of growth probabilities associated with the Eden models can also be described 
as a fractal measure and the spectrum of singularities f ( a )  associated with this measure 
has been estimated for some of these models. For the Eden growth models, the fractal 
dimensionalities describing the structure of total perimeter, internal hull and external hull 
are given by D = d ( 5 )  where 5 is the variance of the logarithms of the probabilities used 
in the multiplicative generators for the multifractal growth probability measure. The 
function d ( 5 )  seems to be the same for the internal and external hulls and quite different 
from d ( 5 )  for the total surface. 

1. Introduction 

Since the introduction of the diffusion-limited aggregation ( DLA) model by Witten and 
Sander (1981) considerable interest has developed in a wide variety of growth and 
aggregation models. In most of these models, such as the Eden (1961) model, the 
growth is assumed to take place on a uniform Euclidean or fractal (Mandelbrot 1982) 
lattice (see, e.g., Martin er a1 1984). In a variety of other models such as invasion 
percolation (Wilkinson and Willemsen 1983, Wilkinson and Barsony 1984, Lenormand 
and Bories 1980, Chayes er al 1985) the growth probabilities depend on random 
numbers which have been selected from some distributions and assigned to the 
individual lattice sites. A family of models of this type have ben investigated by Martin 
et a1 (1984). Although many of these models are extremely simple to define, they often 
lead to surprising results and generate complex (often fractal) structures. A variety of 
examples can be found in recent reviews (Herrmann 1986, Jullien 1986, Witten and 
Cates 1986, Sander 1986a, b, Meakin 1987a, 1988b), books (Jullien and Botet 1987) 
and conference proceedings (Family and Landau 1984, Stanley and Ostrowsky 1986, 
Pynn and Skjeltorp 1986, Pietronero and Tosatti 1986b). 

Much of the work on non-equilibrium growth models has been motivated by the 
need to obtain a better understanding of the physics of porous media for both scientific 
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and practical purposes. I n  many porous systems (such as a bed of sand) the properties 
are quite uniform on all length scales larger than a characteristic correlation length 
(in the case of a bed of sand, this is approximately the diameter of the individual sand 
grains). In other systems, however (such as oil reservoirs (Hewett 1986)), the structure 
is non-uniform over a very wide range of length scales and strong correlations exist 
in the spatial distribution of physical and  chemical properties. It has recently been 
suggested that, in some systems, it might be possible to describe this distribution of 
properties in terms of a fractal measure (Mandelbrot 1974, 1982, Halsey er a1 1986a, b) .  
In this picture the system is considered to be capable of being decomposed into subsets, 
each of which has associated with it a different scaling index a. The subset of sites 
associated with the scaling index a (which is a continuously variable quantity) has a 
fractal dimensionality f( a ) .  This has motivated the development of growth models 
(Meakin 1987c,d) and  the study of random walks (Meakin 1987e, Weissman and  
Havlin 1987) on lattices which have a fractal probability measure which controls the 
growth or random walk. The func t ionf (a)  can be obtained from the asymptotic (large 
range of length scales) distribution of probabilities associated with the fractal measure 
(Halsey et a1 1986a, b, Meakin er a1 1986a, b). In this event those sites with probability 
measures lying in the range f i  to f i + 8 f i  (or ln(fi) to l n ( p ) + S  ln(pcL)) will lie on a 
fractal subset whose fractal dimensionality is given by f ( a )  (see Meakin (1988b) for 
a simple example). To my knowledge no quantitative experimental data exist which 
support this picture for the structure of porous systems (or other random structures). 
However, it provides one of the simplest possible models for the spatial correlation 
of properties in random systems and  for this reason alone it merits further investigation. 
Here the results of an  investigation of Eden growth and  invasion percolation on square 
lattices with fractal measures generated using simple multiplicative hierarchical gen- 
erators will be presented. The results of a preliminary investigation for one of these 
multifractal lattices have been presented recently (Meakin 1 9 8 7 ~ ) .  

The Eden (1961) model is perhaps the simplest of all the non-equilibrium growth 
models. In this model unoccupied perimeter sites (empty sites with one or more 
occupied nearest neighbours) are filled randomly with probabilities which are propor- 
tional to their number of occupied nearest neighbours). Most simulations have been 
carried out using an even simpler version of the model in which all of the perimeter 
sites have equal growth probabilities. More recently, a third version of the Eden model 
(Jullien and  Botet 1985a, b)  has been extensively investigated. In this model occupied 
surface sites are randomly selected and one of the unoccupied nearest neighbours (also 
randomly selected) is then filled. This model seems to reduce the surprisingly large 
corrections to scaling associated with the surface structure of Eden clusters which has 
been a subject of considerable recent interest (Plischke and Racz 1984, Family and  
Vicsek 1985, Jullien and  Botet 1985a, b, Freche er a1 1985, Kardar et a1 1986, Hirsch 
and Wolf 1986, Zabolitzky and Stauffer 1986, Meakin er a1 1986a, Stauffer and  
Zabolitzky 1986). Despite the simplicity of these Eden models, which allows very 
large-scale simulations (2 10" sites) to be carried out, uncertainty remains (particularly 
for dimensionalities greater than 2) concerning the quantitative aspects of the 
asymptotic surface structure (it has been known for over a decade (Richardson 1973) 
that the internal structure is compact). However, it has recently been shown that noise 
reduction (similar to that used earlier for DLA models (Szep et a1 1985, Kertesz and  
Vicsek 1986, Tang 1985)) considerably reduces the corrections to scaling for the 
two-dimensional Eden model (Wolf and Kertesz 1987). Irrespective of the quantitative 
aspects of the surface structure of Eden cluster there now seems to be a concensus 
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that the surface can be described as a self-affine fractal (Mandelbrot 1982, 1985, 1986, 
Voss 1986). It will be shown below that the surface structure of Eden clusters grown 
on multifractal lattices can be described in terms of self-similar fractal geometry. 

The invasion percolation and Eden models are closely related (Martin et a1 1984). 
In invasion percolation, that site on the unoccupied perimeter with the largest probabil- 
ity always grows. In a simple modification of the Eden model (used in our work) the 
growth probability associated with a particular perimeter site is equal to its probability 
measure, p, ,  or to some function of that measure (which defines a new measure). If  
the distribution of probabilities is very narrow, then this model is equivalent to the 
ordinary Eden model but, if the distribution becomes very broad, then this model 
becomes equivalent to invasion percolation. If the growth probability P, at the ith site 
is given by P, = A exp[-(p,/A)] then A can be thought of as a temperature (Martin et 
af 1984). In the low-temperature limit we have invasion percolation and in the 
high-temperature limit Eden growth. Except for the presence of spatial correlations, 
the models discussed in this paper are very similar to those introduced by Martin et 
a1 (1984). 

2. Computer models 

All of the simulations were carried out on two-dimensional square lattices of size 
2'' x 2'' lattice units. A fractal measure is generated on the lattice by first dividing the 
lattice into four quadrants (each of size 29 x 29 lattice units) and randomly assigning 
four numbers ( PI,  P2,  P3 and P4) with all of the lattice sites in each of the quadrants. 
Each of the quadrants is then divided into smaller quadrants of size 28 and the number 
associated with the lattice sites in each of the smaller quadrants is multiplied by PI, 
P z ,  P3 or P4 taken in random order for each subquadrant. The procedure outlined 
above is repeated 10 times in a hierarchical fashion until a number of the form 
P;P',P:P: ( i  + j  + k + 1 = 10) is associated with each of the lattice sites. This procedure 
generates a fractal measure p which associates a number p ( x )  with each of the positions 
on the lattice. A site is then randomly selected and the lattice with its measure is then 
translated, using periodic boundary conditions, so that the selected site is at the centre 
of the lattice. In some of the simulations the initial growth site or seed is selected with 
a probability proportional to the value of the measure p( i ,  j )  at that site. 

In the Eden model the unoccupied perimeter sites (empty sites with one or more 
occupied nearest neighbours) are selected at random and the selected site is occupied 
if a random number X uniformly distributed in the range O <  X < 1 is smaller than 
j ~ ( ' ~ ' ) / p , , , ~ ~ .  Here p(  i, j) is the value of the measure associated with the randomly 
selected perimeter site at position ( i , j )  and pmdx is the maximum value of p for any 
of the perimeter sites. The growth process is continued until the cluster either reaches 
a size of 100 000 sites or reaches the edge of the lattice. The different forms for the 
fractal measure on the substrate lattices were investigated. For model I, PI = 1, P2 = R I ,  
P3 = R: and P4 = R : ;  for model 11, PI = 1, P2 = R 2 ,  P3 = R ,  and P4 = R ;  and for model 
111, PI = 1, P2 = 1, P3 = R3 and P4= R , .  In each case the measure is determined by a 
single parameter ( R I ,  Rz  or R3 for models I ,  I1 and 111, respectively). 

The invasion percolation model corresponds to the Eden model in the limit where 
R ( R I ,  R2 or R3)+0. In  this case the simulation can be made considerably more 
efficient by selecting the next growth site randomly from a list of those sites which 
have the highest growth probability. Since the measure has the form PiP$P:Pi  at 
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each lattice site the histogram for the measure is discrete and there are only a few 
possible values for the growth probabilities (31 for model I, 21 for model I 1  and 11 
for model 111) for the system size of 10 generations used here. In general, a number 
of sites (3 1) will have equal highest growth probabilities of 1.0, corresponding to the 
lowest value of m where the measure associated with each of the sites has the form 
R“ (for R < 1). The growth probabilities associated with all of the other perimeter 
sites will be zero ( R  + 0). 

For the Eden growth models the number of simulations which can be carried out 
using the algorithms outlined above in a reasonable amount of computer time (about 
12 h of CPU time on an IBM 3090 computer) depends on the probability ratio R. For 
the values of R close to 1.0, 500-1000 clusters were grown. For the smallest values of 
R investigated in this work 30-60 clusters were grown. For the invasion percolation 
models 100-200 clusters were grown for each of the six models (models I ,  I1 and 111 
with random and non-random origins) investigated. 

3. Results 

3.1. Eden models 

In earlier work carried out using model I (PI = 1, P2 = R, P3 = R 2  and P4 = R 3 )  results 
were obtained which indicated that the total surface (unoccupied perimeter sites), 
inner hull and outer hull could be described as self-similar fractals and that the effective 
fractal dimensionalities varied continuously with R ( R , ) .  

Figure l ( a )  shows a 85 870 site cluster grown using model I1 with the parameter 
R2 set to a value of 0.1. This cluster was obtained with a version of the model in which 
the growth site is selected randomly with a probability proportional to the value of 
the measure at that site. Using model I1 599 clusters were grown using R 2  = 0.8, 242 
clusters were grown with R2 = 0.4, 116 clusters were grown with R, = 0.2, 45 clusters 
were grown with R2 = 0.1 and 43 clusters were grown with R2 = 0.05. The initial growth 
sites were selected randomly (irrespective of the value of the measure associated with 
each of the lattice sites). The fractal dimensionalities of the clusters were estimated 
from the dependence of the radius of gyration (R,)  on the cluster mass or number of 
occupied sites ( M ) .  Figure 2 shows the dependence of In( R,/ M ” ’ )  on In( M )  obtained 
from the simulations. The fact that these curves are essentially horizontal indicates 
that R,- MI” and that the fractal dimensionality is 2.0. If the slope of about 0.023 
for R2 = 0.05 is taken seriously, this would correspond to a fractal dimensionality of 
about 1.90. However, the results shown in figure 2 are also consistent with the idea 
that D = 2.0 for all values of R 2 .  Similar results were obtained earlier for model I (but 
were not published) and from model 111. 

Figure 3 shows the two-point density-density correlation function C (  r )  for the 
total surface, internal hull and external hull obtained from the simulations used to 
generate the results shown in figure 2. The total surface consists of all of those 
unoccupied sites with one or more occupied nearest neighbours. The internal hull 
consists of all of the occupied sites in the cluster which can be connected to a site at 
infinity by means of a path which consists of steps to nearest-neighbour or next-nearest- 
neighbour sites without passing through an occupied site. The external hull consists 
of all of the unoccupied perimeter sites which can be reached from outside of the 
region occupied by the cluster by paths which connect only unoccupied nearest 
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Figure 1. A cluster of 85 870 sites grown using model 1 1 .  In this model the generator is 
g ivenbyP,=1,P,=0. l ,P3=0. landP4=0.01  ( R , = 0 . 1 ) .  (n)showsallthe85870occupied 
sites, ( b )  shows the 17 218 sites in the unoccupied perimeter, ( c )  shows the 8874 external 
hull sites and ( d )  shows the 5658 internal hull sites. 

neighbours. For the invasion percolation model which seems to be quite closely related 
to the models investigated in connection with this work, the internal hull and external 
hull have different fractal dimensionalities (Meakin and Family 1986). For the case 
of site percolation on a lattice the outer hull has a fractal dimensionality of: (Voss 
1984, Ziff 1986, Sapoval er a1 1985, Saleur and Duplantier 1987, Coniglio et a1 1987) 
while the inner hull has a fractal dimensionality o f f  (Grossman and Aharony 1986, 
Saleur and Duplantier 1987, Coniglio et a1 1987). Since the two fractal dimensionalities 
are quite different for invasion percolation and site percolation it seemed worthwhile 
to measure both of them for the models studied here. 
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Figure 2. Dependence of In(R,/M”*) on In(M) for Eden growth model 1 1  with five 
different values for the probability ratio, R , ,  which defines the generator for the multifractal 
measure. Here R ,  is the radius of gyration and M is the cluster size (number of occupied 
sites). 

Figure 3 shows that the dependence of In[C(r)]  on In(r), where r is the distance, 
is essentially linear over a significant range of length scales. This indicates that the 
surfaces of these Eden growth clusters can be described in terms of self-similar fractal 
geometry. If the correlation function can be described by the power law form 

C ( r ) - r ”  (1) 

then the corresponding fractal dimensionality 0, is given by D, = d - a. Results 
obtained by least-squares fitting of straight lines to the coordinates (In(r), In[ C( r ) ] )  
are given in table 1. 

A similar series of simulations was carried out using the related model in which 
the initial growth site was selected with a probability proportional to its (fractal) 
measure p. Results from these simulations are also shown in table 1. The results given 
in table 1 indicate that both versions of model I1  give very similar results. 

For model I11 (P, = 1, P2 = 1, P3 = R3 and P4 = R3)  a series of simulations was carried 
out with randomly selected growth sites. Six different values for R3 (0.8, 0.4, 0.2, 0.1, 
0.05 and 0.025) were used. The number of clusters generated was 641, 291, 190, 120, 
67 and 57, respectively. The fractal dimensionalities ( D , )  obtained from these simula- 
tions are shown in table 2 for all six values of R 3 .  It is apparent from the results 
shown in tables 1 and 2 and those obtained previously from model I that all three 
models give very similar results. Figure 4 shows the dependence of 0, on the parameter 
R ,  obtained using model 1. It seems evident that, as R + 0, the fractal dimensionalities 
of the total surface and the internal and external hulls approach limiting values smaller 
than 2.0. It also seems that both hulls may approach the same limiting fractal dimension- 
ality and that these limiting values for D, may be the same for all three models. The 
invasion percolation model was developed to explore these questions in more detail. 
Preliminary results have already been given for model I (from 129 clusters with 
randomly selected initial growth sites) which indicate that the fractal dimensionality 
(0,) for the total surface approaches a limiting (R+O) value of 1.77k0.01  and the 
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Figure 3. Density-density correlation functions for clusters generated using Eden model 
11. The correlation functions are shown for five values of the probability ratio R, (0.05, 
0.1,0.2, 0.4 and 0.8). ((1) shows the correlation functions for the total surface (unoccupied 
perimeter). ( b )  and ( c )  show the correlation functions for the internal and external hulls, 
respectively. 

In ( r )  
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Table 1. Dependence of the fractal dimensionality of the total surface, internal hull and 
external hull of Eden growth clusters generated using model 11. These results were obtained 
from the two-point density-density correlation function C( r )  by least-squares fitting straight 
lines to the dependence of In[C(r)] on In(r) over the range of length scales (in lattice 
units) indicated. The first set of results ( a )  were obtained using randomly selected growth 
sites and the second set ( b )  were obtained from simulations in which the initial growth 
site was selected with a probability proportional to the measure associated with that site. 

~ 

Total surface, 5 r S 50 Internal hull, 5 S r S 100 External hull 5 S r s 100 R2 

( a )  0.8 1.07 
0.4 1.55 
0.2 1.70 
0.1 1.73 
0.05 1.74 

1.06 
1.29 
1.37 
1.42 
1.45 

1.06 
1.29 
1.36 
1.42 
1.44 

( b )  0.8 1.05 
0.4 1.55 
0.2 1.70 
0.1 1.73 
0.05 1.74 

1.05 
1.29 
1.38 
1.43 
1.43 

1.06 
1.28 
1.38 
1.42 
1.42 

Table 2. Fractal dimensionalities obtained for the total surface, internal hull and external 
hull for clusters grown on a multifractal lattice using model I l l .  In these simulations the 
initial growth site was selected randomly, irrespective of the value of the measure associated 
with it. The fractal dimensionalities (0,) were obtained from the two-point density-density 
correlation functions in the same way as those reported in table 1. 

J73 Total surface 5 c r S 50 Internal hull 5 G r s 100 External hull 5 r =s 100 

0.8 1.03 
0.4 1.40 
0.2 1.62 
0.1 1.71 
0.05 1.72 
0.025 1.74 

1.03 
1.21 
1.33 
1.38 
1.42 
1.44 

1.04 
1.21 
1.32 
1.37 
1.41 
1.44 

dimensionalities of the internal and external hulls approach values of 1.47 *0.01 and 
1.43 * 0.01, respectively. 

3,2. Invasion percolation models 

An invasion percolation cluster grown on a model I1 ( P ,  = 1, Pz = R 2 ,  P3 = RZ, P4= R:)  
multifractal lattice is shown in figure 5(a). The cluster contains 72 583 sites. Figure 
5 ( b )  shows the 22 511 unoccupied perimeter sites and figure 5(c)  shows the location 
of the 17 639 sites in the internal hull. The 10 980 site external hull is shown in figure 
5 ( d ) .  This figure was generated using a model in which the growth started at the site 
with the largest value of the measure (in this model there is just one of these sites for 
which the measure has a value of 1). Figure 6 shows the density-density correlation 
function for the total perimeter (figure 6 ( a ) ) ,  internal hull (figure 6 ( b ) )  and external 
hull (figure 6 ( d ) )  of the clusters generated using this model. Similar results for model 
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0 0.2 0.4 0 6  0 8  
R 

Figure 4. Dependence of the effective fractal dimensionalities describing the total surface 
(x), internal hull (0) and external hull (+ )  for clusters generated using Eden model I .  
Here the dependence of the fractal dimensionalities on the generator for the fractal measure 
on the substrate is shown. This generator is specified by P, = 1, Pz = R , ,  P, = R: ,  P4 = R: .  
In this figure R indicates R ,  . 

I and model I11  multifractal substrate lattices are also shown. A total of 74 clusters 
for model I ,  133 clusters for model I 1  and 102 clusters for model I11 were used to 
obtain these correlation functions. 

Simulations were also carried out using the invasion percolation model with 
randomly selected initial growth sites. 183 clusters were grown on model I substrates, 
183 clusters were grown on model I1 substrates and 193 clusters were grown on model 
I11 substrates. The correlation functions for the total surface, interior percolation hull 
and exterior percolation hull are shown in figure 7.  The values of the fractal dimension- 
ality (D,)  obtained from these correlation functions are shown in table 3. 

The fractal dimensionality of the clusters themselves (the ‘mass’ dimensionality) 
has been estimated from the dependence of In( Rg/ M ” ’ )  on In( M ) .  The results obtained 
from all six models are shown in figure 8. These results indicate that the fractal 
dimensionality DP obtained, assuming that R,-  M P  and that DP = 1/p,  is approxi- 
mately 2.0 for all models. The dependence of R,  on M does not exclude a fractal 
dimensionality slightly lower than 2.0 but values as low as 1.9 are inconsistent with 
the data displayed in figure 8. I t  seems most probable that the fractal dimensionality 
for these clusters is 2.0. 

4. The growth probability measure 

I t  has recently been shown (Halsey et a1 1986a, b, Meakin et a1 1985, 1986a, b, Meakin 
1986, 1987b, Amitrano et a1 1986, Pietronero and Tosatti 1986a) that the distribution 
of growth probabilities associated with a variety of processes leading to the formation 
of fractal structures can be described in terms of a fractal measure and its associated 
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Figure 5. A 72 583 site cluster grown using invasion percolation model 1 1 .  The growth of  
this cluster was started at the site with the largest value of the fractal measure. ( a )  shows 
all of  the occupied sites, ( h )  shows the 22 511 unoccupied perimeter sites, ( c )  shows the 
17 639 internal hull sites and ( d )  shows the 10980 external hull sites. 

infinite family of fractal dimensionalities or scaling exponents (Mandelbrot 1974, 
Halsey et al 1986a, b, Hentschel and Procaccia 1983, Grassberger and Procaccia 1983, 
Benzi et a1 1984). In  view of this work and the way in which the models investigated 
in this paper were constructed, it seems reasonable to expect that they too should have 
a multifractal distribution of growth probabilities. To test this idea a record was kept 
of all of the growth probabilities associated with all of the unoccupied perimeter sites 
at eight stages during the growth of the structures described above. These eight stages 
correspond to cluster masses of M = 1000,2000,4000,8000, 16 000,32 000,64 000 and 
100 000. 
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Figure 6. Two-point density-density correlation functions for the surfaces of invasion 
percolation models I ,  I I  and I l l .  ( a )  shows the correlation functions for the unoccupied 
perimeters, ( b )  shows the correlation functions for the internal hulls and ( c )  shows the 
correlation functions for the external hulls. These correlation functions are the average 
correlation functions for a large number of simulations, each of which was started at the 
site with the highest value of the fractal measure. 
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Figure 7. Correlation functions for the invasion percolation model surfaces. Results are 
shown for all three models. The results shown here were obtained from simulations very 
similar to those used to obtain figure 6 except that the growth was started at random 
positions, irrespective of the multifractal measures on the lattice. 
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Table 3. Values of the fractal dimensionality ( D, 1 obtained from the two-point density- 
density correlation functions shown in figures 6 and 7. These results were obtained from 
the correlation function over the range 4 s  r s 4 0  lattice units for the total surface and 
5s r 6  100 lattice units for the internal and external hulls. The results shown in ( a )  were 
obtained with randomly selected growth sites and those in ( b )  from simulations in which 
the growth started from the site with the largest value for the fractal measure (models I 
and 11) or one of the sites with the largest value of the measure (model 1 1 1 ) .  

- 
c 

- 
- 
- 
- 
- 
- 

Model Total surface Internal hull External hull 

( a )  1 1.757 1.501 1.467 
I 1.761 1.507 1.474 
I 1.758 1.498 1.462 
I 1.755 1.493 1.465 
I1  1.76 1.48 1.47 
111 1.75 1.49 1.46 

( b )  I 1.78 1.48 1.43 
I1  1.77 1.42 1.40 
111 1.76 1.46 1.42 

0 I I I I I I 

B 

- 1 0 1  I I I I 1 I 
5 7 9 11 

In(M1 

Figure 8. Dependence of In(R,/ M ” 2 )  on In( M j for the invasion percolation models. The 
curves in group A were obtained from models I ,  I 1  and 111 with randomly selected growth 
sites. The curves in group B were obtained from models I ,  I 1  and 111 with growth originating 
at the site with the highest value of the fractal measure. 

For each cluster generated with a particular set of growth parameters, the quantity 
Z ( q )  defined by 

,v < 

Z ( q ) =  c p4 ( 2 )  
I = I  

was determined over a range of positive and negative values of q (typically Z( q )  would 
be measured in the range of about q = -2  to q = 10 at intervals of 0.1 in q and this is 
the range and interval used unless otherwise indicated). In equation (2)  the probabilities 
Pi are ncrmalised growth probabilities ( C  P, = 1). I f  the growth probabilities constitute 
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a fractal measure, then we expect that the quantity Z ( q )  will scale with an overall size 
of the system ( L )  according to 

Z ( q )  - L-“4’ (3) 

4 q )  = log(Z(q))/log(L). (4) 

and in the asymptotic limit ( M  + 00 or L+ CO) the exponent T ( q )  is given by 

For finite-size systems the value obtained for T (  q )  will depend on which length ( L )  is 
used (radius of gyration, maximum radius, 

If  T (  q )  is known as a function of q, then the spectrum of singularities f( a )  (Halsey 
et a1 1986a,b) can be determined from the relationships 

etc). 

a ( q )  = d ( 4 q ) ) / d q  (5) 

f ( a ( q ) )  = w ( q )  - T ( q ) .  (6) 

and 

To determinef( a )  in this fashion for the models used in this work, Z ( q )  was calculated 
individuallly for all of the clusters generated with a particular set of parameters and 
then averaged. Figure 9 shows some results obtained for Eden growth generated with 
model I using the parameters PI = 1.0, P2 = 0.8, P3 = 0.64 and P4 = 0.512 ( R I  = 0.8). 
Figure 9 ( a )  shows the f ( a )  curves obtained for the eight different growth stages 
( M  = 1000,2000,. . . , 100 000). In this case the quantity MI’’ was used for the length 
L. The procedure outlined above always gives a smooth convex curve and does not 
convey any idea about the quality of the data or indicate if the growth probability 
measure is really a multifractal or not. Only by repeating the calculation of f ( a )  for 
different values of L can we determine if the measure is indeed a fractal measure and 
if the correct length L has been chosen. In figure 9( a )  a differentf(a) curve is obtained 
for each cluster size. Figures 9( b) and (c) show the f( a )  curves obtained using length 
( L )  of 2M1/2 and 4M1l2, respectively. Figure 9(c) shows that, if 4M”’ is used for L, 
very similarf(a) curves are obtained for each cluster mass (except for M = 1000 sites). 
This scaling collapse of effective f ( a )  curves for different cluster masses indicates that 
the growth probability measure is a fractal measure and figure 9( c) provides an estimate 
of the shape of the asymptotic f ( a )  curve. 

According to the picture of Halsey et a1 (1986a) for the structure of multifractal 
measures f( a )  should be a smooth convex curve with a maximum value equal to the 
fractal dimension for the support of the measure. In figure 9( c) the maximum value 
o f f ( a )  is about 1.15. For this model (with R I  = 0.8) the fractal dimensionality of the 
total surface was measured (Meakin 1987e) and found to have a value of 1.12, in 
reasonably good agreement with the maximum value o f f ( a ) .  Figure lO(a)  and ( b )  
show effective f ( a )  curves obtained from model I with R I  = 0.4 and 0.2, respectively. 
The maximum values o f f ( a )  are approximately 1.45 for R I  = 0.4 and 1.75 for R I  = 0.2. 
The fractal dimensionality of the total perimeters are 1.35 and 1.75 for R ,  = 0.4 and 
R I  = 0.2, respectively. The reasonably good scaling collapse o f f ( a )  for different cluster 
sizes covering two orders of magnitude in M and one order of magnitude in L combined 
with the quite good agreement of the maximum value off( a )  with the fractal dimension- 
ality of the growing surface provide strong evidence for a multifractal growth process. 
Despite the quite good data collapse shown in figure 9( c) the curves in this figure may 
differ substantially from the asymptotic f( a ) .  The x and y coordinates of each point 
on the curves shown in figure 9(c) correspond to the effective values of two exponents 
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Figure 9. Effective f ( a )  curves for Eden model I and the generators P , =  1, P2=0.8, 
P3 =0.64 and P4=0.S12 ( R ,  =OX). The spectrum of singularities was obtained for the 
growth probability measure on the perimeter sites using equations ( l ) - ( S j .  ( a ) - ( c )  show 
the results obtained using three different measures of the overall cluster sizes ( L ) .  The 
best data collapse of t h e f ( a )  curves for different masses onto a single curve is shown in 
figure 8 ( c )  ( L = 4 M 1 ” ) .  ( a ) - ( c )  were obtained from Z ( 9 )  (equation ( I ) )  with 9 in the 
range -5 s q s 10. 

a 
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Figure 10. Effective f ( a )  curves for the growth probability measure associated with Eden 
model I for R I  =0.4 ( U )  and R I  =0.2 ( b ) .  These figures were obtained using z(9) in the 
range - 2  S 9 S 10. 

or scaling indices ( a  and f ( a ) ) .  The selection of the length L which gives the best 
data collapse does not remove all of the finite-size corrections. Other procedures for 
estimating the f( a )  curve from the growth probability distribution could have been 
used (Meakin 1988a). However, at the present time very little is known about the 
nature of the corrections to scaling for f ( a )  and no general procedures for reducing 
their effects have been developed. 

Figures 11( a )  and ( b )  show results obtained from model I 1  ( R ,  = 0.2) and  model 
111 ( R ,  = 0.1). Here the maximum values o f f ( @ )  are approximately 1.45-1.50 in both 
cases. The agreement with the fractal dimensionality of the total perimeter is not as 
good ( a  value of about 1.7 was obtained in both cases-table 1). 

In the procedure used to estimate the f ( a )  curves shown in figures 9-11 it is 
implicitly assumed that the partition function Z ( q )  can be written as 

Z (  q )  - AL-'IY' (7) 
where A is a constant prefactor. The value of A is that which gives the best data 
collapse for the effectivef(a) curves obtained with different values of L. If a constant 
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Figure 11. Effective f ( a )  curve for Eden models 11 and 111. ( a )  shows the results for 
model I 1  with R ,  = 0.2 and ( b )  show results for model 111 with R ,  = 0.1. 

value is used for A,  then the function T ( q )  is convex and a complete f ( a )  curve can 
be obtained from T(q)  over a sufficiently broad range of q values. It would be more 
realistic to replace equation (7)  by 

Z ( q )  =A(q)L-""  

and determine T ( q )  from a least-squares fit of a straight line to the dependence of 
log(Z(q)) on log(L) for many values of q. The procedure has been carried out using 
the data from which figures 9-11 were obtained. The effective T ( q )  curves obtained 
in this way are not everywhere convex and a sensible f( a )  curve can only be obtained 
for small values of a corresponding to those regions in which the growth probabilities 
are large. In this region the f( a )  curves obtained from this procedure are quite similar 
to those shown in figures 9( c ) ,  10 and 11. 

In principle, corrections to this simple scaling picture should also be considered 
and equation (8) must be replaced by 

Z( q )  - A(  L, q)L-"q'  (9) 
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However, more elaborate approaches to the determination of f ( a )  d o  not seem to be 
warranted in view of the results obtained using equation (8).  

5. Discussion 

One of the main objectives of this work was to determine if the fractal dimensionalities 
characterising the surfaces of the clusters generated by Eden growth on multifractal 
lattices in the limit R += 0 depends on the details of the generator used to construct the 
multifractal. The results of this aspect of the work are summarised in table 3. It is, 
in principle, not possible to establish universality on the basis of computer simulations 
alone and the results shown in table 3 seem to be particularly ambiguous. The 
differences in the fractal dimensionalities describing the surface structure are quite 
small (particularly if clusters with random origins are compared with clusters with 
random origins and those with origins at sites with the highest probability measures 
are compared with clusters generated using different generators but with growth 
originating from the sites with the highest probability measure). However, these 
differences seem somewhat larger than might be expected for large numbers of large 
clusters. Because of the complex structure of the multifractal substrate, the statistical 
uncertainties may be larger than expected. To get some idea of these uncertainties the 
simulations for invasion percolation with model I and random origins were repeated 
four times. The results from these simulations indicate that the statistical uncertainties 
are at least as large as the differences observed between models I, I1 and 111 using the 
same sort of growth origin. The fractal dimensionalities obtained for growth from the 
site with the highest value of the measure seem to be consistently smaller than those 
obtained with random origins. This result is intuitively reasonable since growth from 
the most probable site would be expected to give more compact structures than growth 
from a randomly selected site. However, it is not clear if this difference should be 
sufficient to change the asymptotic fractal dimensionality. 

One way of characterising the multifractal measures used in this work is through 
their moments or  the asymptotic form of their histograms. Either of these quantities 
can be used to obtain the spectrum of singularities f ( a )  (Halsey er a1 1986a) which 
characterise the fractal measure. For the fractal measures used in this work the 
quantities P I ,  P z ,  P, and P4 defining the generator can be regarded as probabilities 
and the generator is also defined by the probability ratios R ,  , R2 or R , .  The probability 
measure at each of the sites has the form R"'. The same measure could also be obtained 
using an additive hierarchical generator with the elements 0, 1, 2 ,  3 for model I, 0, 1, 
1, 2 for model I1 and 0, 0, 1, 1 for model 111.  This would then generate the value of 
the exponent rn at each site which would give the value for the measure R"' at that 
site. From the central limit theorem the additive generators corresponding to models 
I, I1 and 111 should lead to normal distributions which are characterised by the mean 
value and variance of the generator. The mean values are $, 1 and 4, respectively, for 
models I, I1 and 111 and the variance U is & / 2 ,  1 / f i  and $, respectively. This does 
not mean that the f( (Y 1 curve for the substrate should be a log-normal function. For 
model 11, for example,f(a 1 should be log-binomial. The log-binomial and  log-normal 
functions differ substantially for large and small values of a. However, near to its 
peak f ( a )  should have a log-normal shape. I t  has been shown in earlier work that 
growth probability on the surface uf  a growing Eden cluster has, on average, a much 
narrower distribution of growth probabilities than that associated with the substrate. 
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Consequently, it is reasonable to suppose that it is the central part of the f ( a )  curve 
for the substrate which will control the Eden growth process so that the variance of 
the additive generator will control the structure of Eden clusters grown on a multifractal 
substrate. I f  these ideas are correct, then simulations with models I ,  I 1  and 111 with 
R , ,  R2 and R3 given by R 2  = R , & / f i  and R3 = R , / d  should give clusters with the 
same surface fractal dimensionalities. For example, if R ,  = 0.5, then simulations carried 
out with model I1 and R 2  = 0.334 22 and with model 111 and R3 = 0.212 26 should give 
very similar results. Figure 12 compares the two-point density-density correlation 
functions carried out using these three models. The results shown in this figure were 
obtained from 465 simulations for model I ,  153 simulations for model I1 and 235 
simulations for model 111. 

I n l r l  

Figure 12. A comparison of the two-point density-density correlation functions for the 
total surface, internal hull and external hull obtained using model I with R ,  = 0.5, model 
I 1  with R z  = 0.334 22 and model 111 with R,  = 0.212 26. These parameters correspond to 
U In(R) = -0,775 where U is the variance of the generator for the additive measures pa 
from which the multifractal (multiplicative) growth probability measure +p can be obtained 
from ,up = R ” J .  The results from these three sets of simulations cannot be distinguished 
on the scale used in this figure. However, the differences between them do result in a 
thickening of the curves towards the right-hand side. 

Another way of testing this idea is to look at the dependence of the fractal 
dimensionalities of the total surface, internal hull and external hull on U In R. Figure 
13 shows such a plot using the data given in tables 1 and 2 ( a )  and the results obtained 
earlier from model I (with randomly selected growth sites). The results shown in this 
figure indicate that D = f ( ~  In(R))  where the functionfis the same for all three models. 
The function f ( x )  is very similar for both the internal and external hulls. The fact 
that the results from all three models can be represented in this way provides strong 
evidence for the idea that U In(R)  determines universality classes for all three models. 
The quantity U In(R) is the variance I* in the logarithms of the probabilities used in 
the multiplicative generators for the growth probability measure on the total lattice. 
This quantity has a value of 0 for ordinary Eden and infinity for the invasion percolation 
models. 

The models investigated in this work are related to the invading Eden model of 
Martin et a1 (1984). In this model the growth probability P, at the ith perimeter site 
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o ln(R)  

Figure 13. Dependence of the fractal dimensionalities of the total surface, inner hull and 
outer hull for Eden models I ,  I 1  and 111 (with randomly selected growth sites) on v In(R). 
These results were obtained from four simulations using model I ,  five simulations using 
model I 1  and six simulations using model 111. A quite large number (about 100) of clusters 
were generated ir! each simulation. The actual data points are represented by large dots. 
In a few cases these dots cannot be resolved on the scale of this figure. 

is given by 

P, = A  exp(-r,/A) (10) 

where r, is a random variable and the parameter A can be regarded as a temperature. 
In the models used in this work the growth proabilities are given by 

P, = R (11) 
where M ,  is a random variable obtained from the additive generator for the growth 
probability measure. Consequently, in these models ln (R)  plays a role similar to - l / A  
in the invading Eden model. However, the results obtained from the models investigated 
here are very different from those obtained from the invading Eden model ( D  = 2 for 
A > 0 and  D = D, (the fractal dimensionality of a percolation cluster) for A = 0 with 
a crossover from a percolation cluster-like structure on short length scales to a uniform 
structure on long length scales for small non-zero values of A) because of the spatial 
correlations associated with the random variable M, in equation (1  1). 

One of the main conclusions of this work and  of the preliminary investigation of 
these models (Meakin 1987c) is that the surfaces of the clusters are self-similar fractals. 
For the Eden model itself (Family and Vicsek 1985), and  presumably for all variants 
of the Eden model with a finite ratio between the maximum and minimum growth 
probabilities, the surface can be described in terms of self-affine (Mandelbrot 1982, 
1986, Voss 1986) fractal geometry. For models with a large but finite ratio between 
the maximum and minimum growth probabilities (Rikvold 1982, Meakin 1983) the 
surface structure (as well as the structure of the cluster itself) can appear to be 
self-similar even though in the asymptotic (large cluster size) limit the mass fractal 
dimensionality of the cluster is equal to that of the embedding space or lattice ( D  = d )  
and the surface has a self-affine fractal geometry with a global fractal dimensionality 
(Mandelbrot 1986) of d - 1 .  For the models studied here the ratio between the 
maximum and  minimum growth probability diverges algebraically as the cluster size 
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increases. Consequently, these models are quite different from the previously studied 
Eden models and formation of a self-similar rather than a self-affine fractal surface 
does not appear to be unreasonable. It is also possible that, as in some other non- 
equilibrium growth models (Meakin and Vicsek 1985), the correlations may be different 
in the radial and tangential directions. The possibility that two or more scaling 
exponents (fractal dimensionalities) are needed to describe the surface structure has 
not yet been explored. 

In some respects the models investigated here are more closely related to Eden 
growth on an incipient infinite percolation cluster (Family and Vicsek 1985). In this 
case the inner and outer hulls are self-similar fractals with different fractal dimension- 
alities (Grossman and Aharony 1986). 
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